A LONG-RANGE PROGRAM IN SPACE ASTRONOMY

Position Paper of the Astronomy Missions Board

July 1969

Edited by
ROBERT O. DOYLE
Harvard College Observatory
Cambridge, Mass.

For Sale by the Superintendent of Documents. U.S. Government Printing Office, Washington, D.C. 20402 Price \$1.50

PREFACE

The Astronomy Missions Board was established by the National Aeronautics and Space Administration by charter in September 1967 to assist in an advisory capacity in the planning and conduct of all NASA missions to create and operate astronomical experiments in space. The scope of the Board's activities includes: development and review of the scientific objectives and general strategy for space astronomy and associated ground-based astronomy; the formulation of guidelines and specific recommendations for the design of space astronomy missions, and for the various experiments and auxiliary equipment to be developed and used on these missions; the continuing examination of policies relating to the operation of these space observatories once they have been made operational and are available for observations by the scientific community. The work of the Board encompasses the many aspects of space astronomy including direct observations of electromagnetic radiation from astronomical sources, cosmic-ray particles and the supporting research that is necessary, but its scope does not include the study of the Moon and planets from close vantage point or study of the Earth.

The Astronomy Missions Board is presently composed of 18 members of the scientific community with a wide diversity of interests and experience. They are drawn largely from universities, but include members from national laboratories (see appendix for a list of members of the Board and its panels). The Board's activities are supported and supplemented by seven panels and two ad hoc working groups to whom specific areas of responsibility are assigned. The panel compositions are similar to that of the Board itself and involve an additional 31 scientists. This wide membership provides a broad representation of current thought in space astronomy both directly through its membership and from the wider astronomical community by means of letters and discussions.

The activity of the Board has been intensive. With few exceptions, it has met monthly for 2 days at locations appropriate to its current activities. In addition to extensive deliberations and

iv PREFACE

discussions, the meetings have included reports and résumés from NASA personnel about matters such as the current status of projects then underway, present NASA plans for the future, technical reports on areas of special relevance, and budgetary aspects of current and planned programs. The panels have met several times during the past year and have taken the opportunities for obtaining firsthand information about the activities in space astronomy at various NASA centers relevant to their particular fields of interest. Again, briefings as to technical capabilities and current planning were obtained and the panels prepared detailed programs and recommendations for activities in their areas.

An important continuing activity of the Board is the presentation of specific recommendations to the Associate Administrator of NASA. Many of these recommendations have been ad hoc answers to questions raised by NASA, while others have been of a more general nature and have, in most cases, been incorporated into the body of this report, Many of these ad hoc recommendations were for the purpose of assisting NASA to optimize a low-level program, and should not be construed as approval of such a program by the Board or the scientific community.

The Board has created a long-range national program for space astronomy—including discussions of the major problems of astronomy and astrophysics, an observing program describing the next important measurements from space, and examples of the instruments, spacecraft, and missions needed to make those measurements. Specific mission descriptions are not intended as concrete definitions of future missions, but as part of an exemplary program which is used to establish the best current balance between the subdisciplines. The plan contains sufficient mission priorities and interdependences on which to base AMB advice to NASA at various foreseeable levels of effort, and should enable NASA management to assess the impact on scientific progress of the various future options available to them. The purpose of this position paper is to describe the long-range plan as it appears in July 1969.

Past experience has shown that astronomy is a field full of surprises and the unexpected, and it would be extremely short-sighted to expect this report to remain up to date for very long. This report is not intended to be a static document. It is, rather, a working paper to be updated and altered continuously by the Board as technical capabilities change and scientific opportunities and priorities evolve. Nevertheless, it seems appropriate to publish

PREFACE

this version of the position paper, just as it was submitted to NASA as part of the fiscal year 1971 budget planning cycle, in order to acquaint a wide community of astronomers, astrophysicists, physicists, and other interested scientists with the workings of the Astronomy Missions Board, as well as with the national space astronomy program. NASA and the Astronomy Missions Board hope in this way to continue to improve the mechanisms by which the NASA space astronomy program can get the best assistance from, and give the most help to, the entire community of astronomers and space physicists. From time to time, as the extent of the revisions makes a major part of this work obsolete, the Board will again publish an updated position paper.

The detailed reports on the subdisciplines of space astronomy, authored by the panels and endorsed in substance by the Board, will be found in Part II. Part III describes how the panels' programs were evaluated, and how parts of them were combined into long-range plans at two levels of effort—a minimum balanced program and an optimum program—both of which do not attempt simply to do everything suggested by the subdisciplines, but rather emphasize research on those problems judged astrophysically most important by the greatest consensus of the Board.

A summary of the position paper and key features of the longrange plan will be found in Part VII.

FOREWORD

The Astronomy Missions Board advises the National Aeronautics and Space Administration (NASA) through the Associate Administrator, Dr. Homer E. Newell, on the present and future of the national space astronomy program. The Board has developed a position paper which recommends to NASA an integrated space astronomy program for the Seventies. The position paper was received by NASA on July 5, 1969. Because of current widespread interest this paper is being published in its original form without any evaluation or comment by NASA beyond this statement. While NASA will be guided by the recommendations in this paper, publication of this document by NASA is in no sense either an endorsement of its contents or a commitment on the part of NASA to undertake to carry out all or any part of the proposed astronomy program.

CONTENTS

		Page
I.	THE UNIQUE CONTRIBUTION OF SPACE RESEARCH TO THE MAJOR PROBLEMS OF ASTRONOMY AND ASTRO-	
	PHYSICS	1
	Introduction	3
	The Crab Nebula: Subject of All Disciplines	5
	The Cosmic Microwave Background	8
II.	REPORTS ON THE SUBDISCIPLINES OF ASTRONOMY	11
	The Charge to the Panels	13
	The Organizational Structure of the Panels	14
	Endorsement of the Panel Reports by the AMB	15
	RECOMMENDED PROGRAM IN HIGH-ENERGY ASTRONOMY (REPORT OF	
	THE X-RAY AND GAMMA-RAY PANEL)	16
	Introduction	16
	Recommendations	18
	Flight Schedules	22
	Program Summary	25
	X-Rays, E < 15 keV	26
	Current state of observations	26
	Objectives of observational X-ray astronomy	31
	Supporting technology	33
	Gamma Rays, E < 10 MeV	36
	Current state of observations	36
	Objectives	37
	Supporting technology	38
	Gamma Rays, E > 10 MeV	39
	Current state of observations	39
	Objectives	42
	Supporting technology	44
	OPTICAL SPACE ASTRONOMY (REPORT OF THE OPTICAL ASTRONOMY	
	Panel)	46
	Introduction and Summary	46
	Introduction	46
	Flight requirements	49
	Stars	53
	Interstellar Matter	56
	Ultraviolet absorption lines	57
	Emission lines	60
	Optical effects of grains	61
	High spatial resolution	62
	References	63
	Extragalactic Astronomy and Cosmology	63
	Planets, Satellites, Asteroids, and Comets	66

CONTENTS

	Page
Introduction	66
Infrared observations	67
Spectral analysis of the planets	69
Comets	71
Supporting Research and Technology	72
Optical materials, auxiliary optical elements	73
Large optical elements	74
Detectors	74
Laboratory astrophysics	75
Interrelationships with ground-based astronomy	75
Infrared Space Astronomy (Report of the Infrared Astron-	10
OMY PANEL; ALSO PARTIALLY COVERED IN OPTICAL PANEL)	77
Scope and Direction of Infrared Space Astronomy	77
Level of Technical Efforts	78
Goals and Achievements	79
	80
The solar system	80
Stellar evolution	
Galaxies	81
Unknown physical processes in nebulae and galaxies	81
Goals To Pursue	82
Solar system	82
Stellar evolution	83
The galaxy	83
Other galaxies	84
Cosmic background radiation	84
Specific Goals	84
Surveys	84
Detailed studies of selected objects	85
Studies of diffuse emission	85
Means of Making Observations	85
Ground	86
Airplane	86
Balloons	87
Rockets	87
Satellites	88
Research and Development	89
Detectors and preamplifiers	89
Cryogenic problems	90
Ground-based astronomy	90
Contamination	91
Theoretical studies	91
Infrared laboratory studies	92
Spectrometers and filters	92
Appendix: Numerical Relationship on the Relative Value of	-
Different Techniques	93
Atmosphere limitations	93
Radiation fluctuations	96
Telescope performance	99
Low-Frequency Radio Astronomy in Space (Report of the	99
RADIO ASTRONOMY PANEL)	102
Introduction	102
THU OUUCUUI	1114

	Page
Summary	102
Scientific problems	102
Observing requirements	104
Low-Frequency Radio Science in Space	105
Noncoherent processes	105
Coherent processes	106
Discrete sources	107
Self-absorption	108
Source evolution	108
Interstellar medium	109
Intergalactic medium	110
Pulsars	110
Solar system	111
	100
Dilute plasmas	112
Lunar-Based Observations	113
Ground-Based Research and Technology Development	114
Ground-based technology development to aid space radio-	
astronomy programs	114
Ground-based decimetric studies of the Sun	114
Scientific Program	115
Appendix: Example of a Large Filled-Aperture Radio Tele-	
scope	119
Modes of operation	125
Configuration adjustments for frequency coverage	126
Launch requirements	126
SOLAR SPACE ASTRONOMY AND A SOLAR SPACE PROGRAM (REPORT OF	
THE SOLAR SPACE ASTRONOMY PANEL)	127
SOLAR SPACE ASTRONOMY	127
Introduction	127
Members of the Solar Working Group	128
Solar Astronomy	129
Solar Observation From Space	132
Problems of Solar Astronomy	137
Contribution of Space Research to Solar Physics	141
The Future of Solar Space Astronomy	146
Solar Space Program, 1969	149
Introduction	149
Terminology—Classification of Experiments and Spacecraft	149
Review of Action Taken on the 1965 Recommendations of the	
Solar Panel at the Woods Hole Summer Study	151
Present Status of Solar Space Research	154
Priorities of Space Observations	155
Programs and Schedules	158
Preferred fund	159
Solar program schedules	164
	104
Comments on the Various Spacecraft, and the Results Ex-	100
pected From Them	166
Rockets	166
OSO	167
The more advanced spacecraft	168

X

CONTENTS

	rage
5 Arcsec Spacecraft	169
1 Arcsec Solar Space Observatory	171
0.1 Arcsec National Solar Space Observatory	172
Recommendations, 1968-69	173
Appendix	176
A PROGRAM FOR PLANETARY ASTRONOMY FROM SPACE TELESCOPES	
(REPORT OF THE PLANETARY ASTRONOMY PANEL)	177
Summary of Major Scientific Objectives for Planetary Space	
Astronomy	177
Composition and temperature structure of the atmosphere	177
Character of cloud structure	177
Upper atmosphere and escape temperature	178
Surface or cloud detail and meteorology	178
Summary of Recommendations	178
Sounding rockets	178
Small satellites: use on planets	178
Small satellites: pointing system	179
Use of OAO's	179
IR observations	179
Use of large space telescopes	179
Introduction—Scientific Objectives of Planetary Astronomy	110
From Space Telescopes	179
Fundamental problems	181
Short-range objectives	183
Long-range objectives	184
An Ultraviolet Planetary Program for the Immediate Future	185
Objectives	185
Sounding rockets	187
Astronomical Explorers	190
The Use of OAO's	191
An Infrared Planetary Program for the Immediate Future	192
Long-Range Planning: Planetary Astronomy from Relatively	104
Large Space Telescopes	194
Appendix 1: Ultraviolet Planetary Observations Through	105
1968	195
Appendix 2: Proposed Launch Schedule	200
FIELDS AND PARTICLE ASTRONOMY (REPORT OF THE FIELDS AND	000
PARTICLE ASTRONOMY PANEL)	202
Introduction and Summary	202
Particles and Fields Observation in Modern Astrophysics	208
Panel Recommendations For Experiments, and Suggested	
Missions Essential for Field and Particle Astronomy in the	240
Period 1971-80	213
Rockets and balloons	215
Sharing costs	215
Magnetosphere physics	217
Recommendations Beyond the Minimum Program	217
Recommendations to the Astronomy Missions Board—NASA	218
Appendices:	
I. Bibliography—General Reviews of Fields and Particle	100
Astronomy in Space—1958-1968	221
II: Automated Large Experiment (ALE) Concept	222

		Page
III.	AMB LONG-RANGE PLAN FOR SPACE ASTRONOMY Procedure for Establishing Priorities Mechanism for Assembling an AMB Program From the Subdiscipline Schedules	223 225 227
	The Two AMB Long-Range Plans The minimum balanced program The optimum program Flight Schedules	227 227 228 229
	Brief Review of the Scientific Highlights and Mission Objectives of the AMB Space Astronomy Program New Directions for the Space Astronomy Program	233 238
IV.	SUPPORTING RESEARCH AND TECHNOLOGY (SR&T) The Components of SR&T A Healthy Flight Program Scientific Manpower and the Conduct of Experiments The Level of SR&T	241 243 244 247 247
V.	GROUND-BASED ASTRONOMY IN AN INTEGRATED NATIONAL PROGRAM Introduction An integrated program Agency responsibility Recommendations Large optical telescopes	251 253 255 257 258 258
	Ground-based radio astronomy Specialized monitoring telescopes Summary of Ground-Based Working Group Recommendations Large optical telescopes Large steerable paraboloid for radio astronomy Specialized monitoring telescopes	262 265 266 266 267 267
VI.	THE ROLE OF MAN IN SPACE ASTRONOMY General Considerations on the Availability of Man Specific Considerations on the Use of Man If Available	269 269 272
VII.	SUMMARY Astronomy and Space Research The Major Unsolved Problems in Astronomy Preparation of the Long-Range Plan Some New Directions	275 277 278 279 280
APP	ENDIX A.—Members of the Astronomy Missions Board	285
APP	ENDIX B.—Bibliography	290
INDI	EX	291